

Making Bioenergy Sustainable

Gernot Klepper Kiel Institute for the World Economy

3. November 2020

Bioenergy is embedded in a global system of natural resource use

Trade-Offs in the use of Biomass

- Commercial use of biomass serves many needs and it supports
- global ecosystem functions

Global biomass potentials and Net Primary Production (NPP)

Global yearly biomass flows around 2000 in EJ/year

Source: IEA, 2012

Which ecosystems are used for bioenergy?

Quellen: Erb et al., 2007; Schneider et al., 2009; FAO, 2010; Wirsenius, 2003; Sims et _al., 2006; Krausmann et al., 2008; FAOSTAT, 2012; Kummu et al., 2012

Bioenergy in the context of sustainability requires consideration of complex feedback effects

KIEL INSTITUTE FOR THE WORLD ECONOMY

- Direct Trade-offs
 - Food
 - Ecosystem functions
 - Fibre uses
 - Alternative sources (waste/residues)
- Indirect Knock-on effects
 - Rural development
 - Overall land use
 - Distributional effects
- Welfare aspects
 - Income generation
 - Poverty reduction
- Ecologic sustainability
 - Biodiversity
 - Carbon sinks (forests, peat)

SDGs set the framework for sustainable economic activities SDGs may be in conflict to each other: Need for societal decisions about such trade-offs!

3. Nov. 2020

ISCC as an example for a practical introduction of sustainability certification of global supply chains:

ISCC principles – a balanced set of ecological and social criteria

Principle 1: Protection of Biodiverse Principle 2: Good Agricultural and Carbon Rich Areas Practice

Principle 3: Safe Working Conditions

Principle 6: Good Management Practices and Continuous Improvement

Principle 4: Compliance with Human, Labour and Land Rights

Principle 5: Compliance with

Laws and International Treaties

Reconciling SDGs and the Paris Agreement with practical approaches to sustainable supply chains for Bioenergy

SUSTAINABLE GOALS

ISCC PRINCIPLE 1 & 2: Protection of land with high biodiversity value or high carbon stock. Production in an environmentally responsible way including the protection of soil, water and air:

- SDG7 Affordable and clean energy
- SDG13 Climate Action
- SDG14 Life below water
- SDG15 Life on land

ISCC PRINCIPLE 3: Safe working conditions:

- SDG3 Good health and well-being
- SDG6 Clean water and sanitation

ISCC PRINCIPLE 4: Human rights, labour rights and land rights:

- SDG1 No poverty
- SDG2 Zero hunger
- SDG4 Quality Education
- SDG5 Gender equality

United nations conference on climate change

GOVERNMENTS AGREED:

- A long-term goal of keeping the increase in global average temperature to well below 2°C above pre-industrial levels
- To aim to limit the Increase to 1.5°C, since this would significantly reduce risks and the impacts of climate change
- On the need for global emissions to peak as soon as possible, recognising that this will take longer for developing countries
- To undertake rapid reductions thereafter in accordance with the best available science
- GHG requirements are already implemented in ISCC. Detailed methodology for international supply chains in place

Waste and residue-based supply chains can avoid land use conflicts, but also feedstocks of non-biological origin

Waste and processing residues

Examples

Renewable nonbio feedstocks Forestry / agricultural crop residues

Landfill gas

Tall oil

Power-to- Power-to-Gas Liquid

Forestry residue

End-of-life tires

Municipal solid waste / mixed plastic waste

Crude glycerine

CO2

Husks

Support, encouragement, and regulation are crucial elements for farmers and companies to ask for sustainability certification

Examples

Renewable Energy Directive (RED) and **Fuel Quality Directive** (FQD) of the European Union

Japanese Government

Liquid Fuel Supply **Regulation of** Oueensland

Participation in CORSIA for sustainable alternative jet fuels

AIREG – Aviation for renewable energy in Germany

INRO

Green Deal

Der Blaue Engel

Industrial Applications

Textile Exchange's "2025 Sustainable Cotton Challenge"

Sustainable supply of raw materials for the industrial use of biomass (INRO)

sustainability criteria polymer products

Agricultural code

Food

(oca:Coli

FORUM

Diageo's Sustainable Agricultural Sourcing Requirements

Sustainable Agriculture

Initiative (SAI) Platform

Coca Cola's

Sustainable

Principles

Forum

Agriculture Guiding

Retailers' Soy Group

responsible soy of the

Consumer Goods

Feed

Soy Network Switzerland

Soy sourcing supply chains of Mars petcare

Others

TCDP

Future role of bioenergy for net-zero and net-negative GHG emissions

BECCS: Bioenergy and Carbon Capture and Storage

Ethanol plants with CC already in operation and storage technology ready with running demonstration projects Can replace inefficient traditional bioenergy use!

Summary

Lessons for Sustainable Bioenergy

- Bioenergy will play an increasingly important role in future energy markets and in GHG-reduction (e.g. Sustainable Aviation Fuels (SAF), BECCS)
- > But it needs to meet sustainability requirements in order to become effective in meeting societal goals
- Bioenergy along the entire supply chain is relevant for sustainability
- Latin America has large land resources and a climatic conditions for above average GHG-savings (e.g. ethanol, palmdiesel, etc.)
- Trade-offs between different sustainability objectives (ecologic, social, economic) need to be considered carefully
- Certification of the bioenergy supply chains is a transparent and cost effective way to establish a sustainable bioenergy sector
- Governments play a crucial role in making certification effective and wide-spread

Many thanks for your attention!

Backup

ISCC is a well established and credible certification standard

Over 4,000 ISCC certificates in more than 100 countries are currently valid

Regular impact assessment conducted by ISCC

- Critical review of **what has been achieved**, and **what is the impact** on the ground
- Definition of the ISCC Theory of Change
- Gathering of data about impact is challenging
- Assessment includes sample data taken from audit reports and a survey with certification bodies
- Improvements in the ISCC system will provide **more digitally accessible data** about impact
- Continuous **improvement** process with **involvement** of stakeholders
- ISCC will **report** about impact **on a regular basis** in the future

KIEL INSTITUTE FOR